Calculates the mean squared error of a linear regression model

calc_mse(y, y_pred)

Arguments

y

a numeric vector of actual response values

y_pred

a numeric vector of predicted response values

Value

a numeric value of the mean squared error

Examples

y <- c(2, 3, 5, 7)
y_pred <- c(1.5, 3.5, 4.5, 6.5)
mse <- calc_mse(y, y_pred)
mse # display the mean squared error
#> [1] 0.25